Stochastic receptor expression allows sensitive bacteria to evade phage attack. Part II: theoretical analyses.
نویسندگان
چکیده
Stochastic gene expression in bacteria can create a diverse protein distribution. Most of the current studies have focused on fluctuations around the mean, which constitutes the majority of a bacterial population. However, when the bacterial population is subject to a severe selection pressure, it is the properties of the minority cells that determine the fate of the population. The central question is whether phenotype heterogeneity, such as a spread in the expression level of a critical protein, is sufficient to account for the persistence of the bacteria under the selection. A related question is how long such persistence can last before genetic mutation becomes significant. In this work, survival statistics of a bacterial population with a diverse phage-receptor number distribution is theoretically investigated when the cells are subject to phage pressures. The calculations are compared with our experimental observations presented in Part I in this issue. The fundamental basis of our analysis is the Berg-Purcell theoretical result for the reaction rate between a phage particle and a bacterium with a discrete number of receptors, and the observation that most phage-resistant mutants isolated in laboratory cultures are defective in phage binding. It is shown that a heterogeneous bacterial population is significantly more fit compared to a homogeneous population when confronting a phage attack.
منابع مشابه
A Pilin Region Affecting Host Range of the Pseudomonas aeruginosa RNA Phage, PP7
The host range of a phage is determined primarily by phage-receptor interaction. Here, we profiled the host range of an RNA leviphage, PP7 that requires functional type IV pilus (TFP) in order to enter into its host bacterium, Pseudomonas aeruginosa. Out of 25 twitching-proficient P. aeruginosa strains, 4 with group I pilin and 7 with group III pilin displayed PP7-resistance. The remaining 14 p...
متن کاملRecombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells
Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...
متن کاملBattling Phages: How Bacteria Defend against Viral Attack
Bacteriophages (phages) are accomplished, bacteria-specific, viral predators with far-reaching impact: from the food and biotechnology industries [1] to global nutrient cycling [2] to human health and disease [3]; wherever bacteria thrive, it seems, so do predatory phages. In order to survive the constant onslaught of phage, bacteria have evolved mechanistically diverse defense strategies that ...
متن کاملThe Population and Evolutionary Dynamics of Phage and Bacteria with CRISPR–Mediated Immunity
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with associated genes (cas), form the CRISPR-cas adaptive immune system, which can provide resistance to viruses and plasmids in bacteria and archaea. Here, we use mathematical models, population dynamic experiments, and DNA sequence analyses to investigate the host-phage interactions in a model CRISPR-cas system, Stre...
متن کاملFormation of therapeutic phage cocktail and endolysin to highly multi-drug resistant Acinetobacter baumannii: in vitro and in vivo study
Objective(s): Phage therapy is a potential alternative treatment for infections caused by Acinetobacter baumannii, a significant nosocomial pathogen, which has evolved resistance to almost all conventional antimicrobial drugs in poor hygiene and conflicts areas such as Iraq. Materials and Methods: Bacteriophages were isolated to highly resistant isolates of A. baumannii to form therapeutic phag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 94 11 شماره
صفحات -
تاریخ انتشار 2008